表面粗糙度儀發(fā)明與歷史
|
|
發(fā)布日期:[2008-06-13] 共閱[4414]次 |
表面粗糙度儀發(fā)明與歷史 表面粗糙度與零件表面功能有著密切的關(guān)系,因此人們?cè)诤茉缫郧熬驼J(rèn)識(shí)到測(cè)量表面粗糙度的重要性 。但由于技術(shù)工藝水平的落后,早只能單純依靠人的視覺和觸覺來估計(jì),即通過目測(cè)或用手觸摸 試件與標(biāo)準(zhǔn)樣塊進(jìn)行比較,隨著生產(chǎn)技術(shù)的發(fā)展,人們又采用了比較顯微鏡進(jìn)行比對(duì)。這些原始的 測(cè)量方法只能對(duì)表面微觀不平度做出定性的綜合評(píng)定。自從1929年德國的施馬爾茨Schm altZ發(fā)明了用光杠桿進(jìn)行放大的表面輪廓記錄儀后,人們就一直致力于表面質(zhì)量檢測(cè)技術(shù)的 研究,從此開始了對(duì)表面粗糙度的數(shù)量化描述。1936年艾博特Abbott制成了*臺(tái) 車間用測(cè)量表面粗糙度的儀器,它是現(xiàn)在美國Bend公司測(cè)微計(jì)分廠生產(chǎn)的表面輪廓儀的 。這種儀器用測(cè)量距離輪廓峰頂?shù)纳疃扰c支承面積比的關(guān)系曲線即艾傅特曲線來表征表面粗糙度。 測(cè)量和評(píng)定表面形貌的通用方法是輪廓法,這種方法只需測(cè)量工件表面上的幾個(gè)截面輪廓,然后再 根據(jù)輪廓曲線上的幾何特征計(jì)算出評(píng)定表面質(zhì)量的粗糙度參數(shù),目前世界各國有關(guān)表面粗糙度的標(biāo) 準(zhǔn)都是根據(jù)輪廓法制定出來的。現(xiàn)在常用的表面輪廓測(cè)量方法有很多,如觸針方法、各種光學(xué)方法 和掃描探針顯微鏡技術(shù)等。隨著現(xiàn)代工業(yè)的飛速發(fā)展,對(duì)零件的加工表面質(zhì)量提出了越來越高的要 求,而掃描探針顯微鏡技術(shù)、高精度粗糙度測(cè)量?jī)x器的發(fā)展和數(shù)據(jù)處理能力的提高,使得三維表面 微觀形貌的測(cè)量成為可能。近年來,由于計(jì)算機(jī)技術(shù)、電子技術(shù)、數(shù)據(jù)處理能力的提高,研制了許 多三維表面微觀形貌測(cè)量?jī)x,使得在局部表面上三維評(píng)定表面粗糙度成為可行,而且上方興未艾。下面將介紹幾種典型的檢測(cè)方法:一接觸式測(cè)量法廣泛應(yīng)用的接觸式測(cè)量?jī)x是觸針式輪廓儀。觸針式側(cè)量法自1927年以來就一直 被采用,目前仍然被廣泛地用于表面粗糙度測(cè)量,而且用它所獲得的結(jié)果經(jīng)常作為評(píng)價(jià)其它方法的 參考標(biāo)準(zhǔn)。觸針法是測(cè)量表面微觀形貌的傳統(tǒng)方法,該方法可直接獲得被測(cè)表面某一截面的輪廓曲 線,通過計(jì)算機(jī)處理,可得出接近真實(shí)輪廓參數(shù)的各種表面特征參數(shù);但其測(cè)量結(jié)果帶有一定的片 面性和偶然性,而且也不可能完整的描述和反映整個(gè)表面形貌的幾何特征。傳統(tǒng)的觸針式輪廓儀只 能測(cè)量二維輪廓參數(shù),80年代以來,隨著產(chǎn)品表面質(zhì)量要求的提高,有了對(duì)三維形貌檢測(cè)的需要 ,國內(nèi)外對(duì)傳統(tǒng)的二維觸針儀進(jìn)行了改進(jìn)。傳統(tǒng)二維接觸式輪廓儀只有x方向和z方向兩個(gè)自由度 。如果加上y方向的一維移動(dòng),便能進(jìn)行簡(jiǎn)單的三維測(cè)量。國內(nèi)還沒有這類成熟的產(chǎn)品,上為的是英國RankTay】or Hobson公司,他們經(jīng)過數(shù)十年的研究成功地推出了一系列比較成熟的產(chǎn)品,并在生產(chǎn)實(shí)際中獲得了廣泛的應(yīng)用,其代表產(chǎn)品是Ta刃orscan 3D scanner型具有高速掃描頭的表面三維輪廓儀。它們一般采用金剛石探針掃描被測(cè)表面,其橫 向和縱向分辨率可達(dá)ZOnnl和0.1~甚至更高。這種方法的優(yōu)點(diǎn)是:測(cè)量范圍大、分辨率高 、測(cè)量結(jié)果穩(wěn)定可靠、重復(fù)性好。但是接觸式測(cè)量有其難以克服的缺點(diǎn):1為了使測(cè)頭不至于 很快磨損,測(cè)頭的硬度一般都很高,這樣測(cè)量時(shí)勢(shì)必會(huì)劃傷被測(cè)表面,所以不易測(cè)量高質(zhì)量和軟質(zhì) 表面;2測(cè)頭的頭部為了保證耐磨性并保持剛性而不可能做得非常細(xì)小、尖銳,那么如果側(cè)頭 頭部曲率半徑大于被測(cè)表面上微觀凹坑的半徑必然造成該處測(cè)量數(shù)據(jù)的偏差,使測(cè)得的形貌與實(shí)際 形貌不吻合,從而影響測(cè)量精度;3測(cè)量三維表面時(shí),為了保證掃描方向上的精度及分辨率, 進(jìn)給步距必須很,卜,這樣必然大大降低測(cè)量速度。二非接觸式測(cè)量法2o世紀(jì)so年代,由于光 學(xué)技術(shù)被引入表面形貌測(cè)量,從而實(shí)現(xiàn)了非接觸式測(cè)。該技術(shù)由于克服了接觸式測(cè)的諸多缺點(diǎn) 而成為近年來的研究熱點(diǎn),它是光、機(jī)、電、磁等多學(xué)科交叉形成的一個(gè)綜合體。它的特點(diǎn)是通過 將表面微觀輪廓的高度信息轉(zhuǎn)換為光、聲、電等易于測(cè)的信號(hào),從而達(dá)到測(cè)量的目的。1.光學(xué) 測(cè)童法光學(xué)測(cè)量法是基于光學(xué)原理的非接觸測(cè)法。該法不僅可以實(shí)現(xiàn)表面形貌的高精度的快速非 接觸測(cè)量,而且系統(tǒng)結(jié)構(gòu)簡(jiǎn)單、成本低,在表面非接觸測(cè)量領(lǐng)域得到了廣泛應(yīng)用。它包括光學(xué)探針 法和干涉法。1951年聯(lián)邦德國奧普托廠生產(chǎn)出測(cè)量表面粗糙度的干涉顯微鏡,1958年蘇聯(lián) 生產(chǎn)出性能良好的MNN一4型干涉顯微鏡,1968年我國上海光學(xué)儀器廠生產(chǎn)出6J型干涉顯 微鏡。2.掃描探針顯徽鏡技術(shù)1981年,IBM公司蘇黎世實(shí)驗(yàn)室發(fā)明了一種新型的表面分析儀器—掃描隧道顯微鏡sc~ingTunn山ngMierosc叩e,sTM。在此后的短短幾年里,它以*的性能激起了世界各國科學(xué)家的極 大興趣和熱情。在8o年代,相繼誕生了一系列在主要結(jié)構(gòu)和工作方式方面與STM相似的顯微儀 器,用來獲取用STM無法獲取的有關(guān)表面結(jié)構(gòu)和性質(zhì)的各種信息。這個(gè)目前被稱為“掃描探針顯 微鏡ScanningProbe靦croscoPe,sph八"的顯微儀器家族還在不斷 發(fā)展,成為人類認(rèn)識(shí)微觀世界的有力工具。掃描探針顯微鏡可以在納米級(jí)乃至原子級(jí)的水平上研究 物質(zhì)表面原子和分子結(jié)構(gòu)及相關(guān)的物理、化學(xué)性質(zhì)。下面將介紹幾種有代表性的掃描探針顯微鏡。①掃描隧道顯徽鏡掃描隧道顯微鏡sTM的工作原理是基于子力學(xué)的隧道效應(yīng)。它主要由壓電陶瓷掃描控制器、針尖樣品逼近裝里、 電子反饋回路以及數(shù)據(jù)采集、圖象處理系統(tǒng)組成。STM具有原子級(jí)的*分辨率,其橫向與縱向 分辨率分別達(dá)到0.1~和o.olnm即可以分辨出單個(gè)原子。但其局限性在于:被測(cè)件必須導(dǎo) 電,垂直和水平測(cè)蚤范圍小,此外,若表面形貌的波長(zhǎng)或峰、谷差太?小,在復(fù)制表面時(shí),高分子 膜難以滲入,不能正確反映表面真實(shí)形貌。②原子力顯微鏡為解決非導(dǎo)體的表面微觀形貌的檢測(cè), 1986年Binn誼g等人發(fā)明了原子力顯微鏡,它是利用原子間的作用力而進(jìn)行測(cè)量的。AF M的工作原理圖如圖1所示。當(dāng)測(cè)量時(shí),AFM的探針被微力彈簧片壓向試件表面,探針和試 件表面間的原子排斥力將探針微微抬起,達(dá)到力的平衡。AFM探針在試件表面掃描時(shí),因微力彈 簧的壓力基本不變,故探針將隨被測(cè)表面的起伏而上下波動(dòng)。通過用隧道電流或光學(xué)方法檢測(cè)微懸 臂的位移,可實(shí)現(xiàn)對(duì)探針原子與表面原子之間的排斥力的監(jiān)測(cè),進(jìn)而可測(cè)出試件表面的微觀形 貌。由于不需要在探針與樣品間形成電回路,突破了試件必須導(dǎo)電的限制,這使AFM有了更加廣 泛的應(yīng)用領(lǐng)域,但其測(cè)量分辨率較sTM了氏。Binning等人研制的*臺(tái)AFM當(dāng)時(shí)只有 3nm的橫向分辨率。1987年斯坦福大學(xué)Quate等人報(bào)道了研制的AFM達(dá)到了原子級(jí)分 辨率。1988年底中科院化學(xué)所研制成功*臺(tái)具有原子級(jí)分辨率的AFM。光學(xué)檢側(cè)呂圈定峪XYZ壓電肉充掃貓移反債拉側(cè)掃描發(fā)生呂1示呂圈1AFM工作原理圈③其它掃描顯微鏡掃描力顯微鏡s FM是在STM基礎(chǔ)上發(fā)展起來的,它通過測(cè)盤帶尖的力敏感元件與樣品表面局部區(qū)域的相互作用 力來獲得高分辨率的圖像。激光力顯微鏡、磁力顯微鏡等雖然采用不同的測(cè)量原理,但都是通過檢 測(cè)探針和樣品表面之間的物理化學(xué)特性參量來獲知樣品表面微觀形貌的,在此不再贅述。三結(jié)論掃 描探針力顯微鏡技術(shù)的迅速發(fā)展,為超精密加工表面粗糙度的測(cè)量,提供了更先進(jìn)的測(cè)t手段,它 不僅使測(cè)量精度達(dá)到了納米數(shù)級(jí),而且能夠得到加工表面真實(shí)的三維圖像,從而完整全面地反映 出樣品表面的功能特性。它克服了傳統(tǒng)測(cè)量方法如光切法、接觸式測(cè)量法測(cè)量精度低的弱點(diǎn),能以 相當(dāng)高的分辨率探測(cè)加工表面原子和分子的微觀形貌。目前,超精密加工表面形貌的測(cè)t技術(shù)主要 是向提高系統(tǒng)橫向分辨率、三維形貌測(cè)和在線檢測(cè)方向發(fā)展,并且對(duì)三維表面微觀形貌的表征方 法和評(píng)定參數(shù)的研究越來越迫切。表面粗糙度檢測(cè)技術(shù)發(fā)展概述@關(guān)國強(qiáng)$哈爾濱理工大學(xué)機(jī)械動(dòng)力工程學(xué)院!黑龍江哈爾濱 150080掃描探針顯微鏡;;測(cè)量;;粗糙度機(jī)械加工中,表面特征的研究是控制機(jī)械零件表面 質(zhì)量的主要內(nèi)容,而表面粗糙度是表面特征的重要技術(shù)指標(biāo)之一。隨著機(jī)械加工工藝水平的提高, 對(duì)零件的表面質(zhì)量提出了越來越高的要求,因此如何進(jìn)行測(cè)量和評(píng)定已成為國內(nèi)外學(xué)者研究的主要 課題。自從掃描探針顯微鏡SPM出現(xiàn)后,各類SPM已經(jīng)成為測(cè)量超精密表面粗糙度的有力手段,并發(fā)揮出技術(shù)優(yōu)勢(shì) 北京時(shí)代新天科貿(mào)有限公司 : |
|